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Phase transition of quantum Ising spin models on g-letter 
generalized Thue-Morse aperiodic chains 
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lntemational Center for Theoretical Physics, 34100 Trieste, Italy 

Received 18 October 1991 

. Ahstrart~ ..-.. I h c  y a z t u m  !si". s p i ~  mndc! i" L tre"sYcTsc fic!d ruith caup!lngr nrdered 
according to the g-letter generalized Thue-Morse sequence is considered. Exact analytical 
results for the critical line, energy gap and dispersion relation of the low-energy excitations 
are obtained. It is shown that the quantum lsing spin models can undergo a magnetic 
phase transition with the critical behaviour the same as in the periodic case. 

In recent years, the phase transition of one-dimensional ( I D )  quantum king spin 
models ( Q I M ~ )  with the nearest-neighbour couplings ordered according to different 
aperiodic sequences has been a focus of much attention [I-71 since these systems are 
interesting in conjunction with magnetic properties of aperiodic superlattices [8,9]. 
In their earliest numerical work [l], Doria and Satija showed that the I D  Fibonacci 
quasiperiodic (QP) QIM exhibits an Ising-like critical point in the thermal sector with 
the correlation length exponent U = I .  The result was subsequently confirmed indepen- 
dently by the analytical studies of Ceccatto, Igl6i and Benza [2-41. The analytical 
investigations also showed that the QIM on the Fibonacci QP chain develops the usual 
logarithmic singularity in the ground state energy and the specific heat at the critical 
point. Recent work [6] showed numerical evidence that a phase transition could exist 
in copper- and nickel-mean generalized Fibonacci Q I M ~ .  On the basis of numerical 
analysis, Tracy [SI conjectured that, for the I D  ferromagnetic aperiodic QIM, the 
Iq inv- l ike  _ _ _ _ _  nhace r___l t r n n d i n n  is nrcrerved ..... nn ... ouasicrvatalr ~ with the .... ...... cnrrewondins ...-... ~ sohatitn. 

tion rules satisfying the Pisot-Vijayaraghavan (PV) property, i.e. only one root of the 
characteristic polynomial associated with the Substitution rule is in absolute value 
greater than one. This conjecture has recently been confirmed analytically by Benza 
and coworkers [7] on Q I M S  constructed with arbitrary two-letter substitution rules. 
Their results showed that the copper- and nickel-mean generalized Fibonacci QIMS do  
not exhibit a phase transition and the behaviour is similar to the random Ising case. 
Moreover, Benza er al also showed that although some two-letter substitution rules 
do not generate genuine quasicrystals, by which we mean that their Fourier transforms 
contain 8-function peaks, the corresponding Q i M s  can undergo a phase transition with 
critical behaviour the same as in the periodic case if the substitution rules satisfy the 
pv property. A famous example, which has been studied both numerically and analyti- 
cally [ I O ,  111, is the Thue-Morse (TM) aperiodic Q I M .  Up to now, most of the previous 
work in this line has been focused on the aperiodic Q l M s  constructed with two-letter 
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substitution rules, in which there are only two kinds of couplings. On the other hand, 
a majority of the known quasicrystals are ternary alloys. It has been recently claimed 
[12] that in some cases the ID two-letter Fibonacci sequence is no longer appropriate 
for the description of the quasicrystal model, and should be replaced by a multiletter 
sequence in order to represent greater reality. Hence, it is also necessary to study the 
physical properties of the multiletter aperiodic sequence, which has received relatively 
little attention. In this article we consider the phase transition problem of the QIM on 
o-letter ...... o . ~ ~ . ~ ~ ~ ~ ~ ~ . _  generalized Thue-Morse ...-. ...~.. (CTM) chains (see suhs!itu!ion pi!$ (1) he!ow). We 
will show that the g-letter GTM QIMS can undergo an king-like phase transition, 
independent of the value of g. 

The study of the physical properties of the TM chain is motivated by the fact that 
this deterministic structure is believed to be more ‘disordered’ than the QP one. The 
experimental realization of a TM GaAs-AIAs superlattice due to Merlin et a /  further 
stimulates interest. Among many studies of this lattice, the phase transition problem 
of the TM QIM has been investigated both numerically and analytically by  Doria et a/ 
and Lin and Tao [IO, 111. Recently, Kolir et a /  made an extensive study of the physical 
properties of the TM chain and its two-letter generalization [13]. The Q I M ~  on the 
two-letter GTM chains show no essential difference, as far as their critical behaviour 
is concerned, from that on the ordinary TM chain. Kolir’s two-letter GTM sequence is 
generated by the substitution rule [I31 A,,, = AYE;; E,,, = BYAY, where m and n are 
posiiive iniegers. Wiih m = n = i ihe subsiiiuiion ruie wiii produce ihe ordinary TM 

sequence. Note that the substitution rule is indeed a direct analogue of that for the 
generalized Fibonacci lattice [14]. The g-letter GTM sequence studied in this article is, 
on the other hand, generated by the following substitution rule: 

(1) A, + A,A2A,.  . . A, A 2 + A Z A 3 . .  . AEA,,  . . . A, + A,A, . . . Az-, 
where the Ai’s with i = 1,2, .  . . , g correspond to g letters. When g = 2 the substitution 
rule (1 j gives the ordinary TM lattice. Analogously to the ordinary TM case, the g-letter 
GTM lattice cannot be characterized by a finite set of irrational numbers and their 
Fourier spectra are singular continuous, i.e. the g-letter GTM systems have a degree of 
ordering intermediate between the QP and random ones. Will these multiletter aperiodic 
Q I M ~  exhibit an Ising-like critical point? To be specific let us focus on the g = 3 case first. 

Before writing down the Hamiltonian, we would like to point out that if we represent 
the non-negaiive integers 

0 ,1 ,2 ,3 ,4,5,6,7,8,9 , . . .  
by the ternary code 

00,01,02, 10, 11, 12,20,21,22,100, 

and then sum the digits in each number modulo 3, we also obtain the three-letter GTM 
sequence composed oi three symbois, 0, I and 2, or, equivaientiy, A , ,  A2 ana A,. in 
what follows we will refer to this generating method as the ‘ternary code method’. It 
will be useful in deriving the dispersion relation for the low excited slates. 

The Q I M  is defined by the Hamiltonian 
M M 

,=I j = ,  

H =  - 1 A ( ’  r )u;u:+, -h  z uf (2) 

where v.; and vi are Pauli matrices at site i and h is a constant transverse magnetic 
field. The coupling parameters A (  i j  form a three-letter GTM sequence with three values 
A r , ,  Ar, and Ar,  associated, respectively, with elements A , ,  A, and A,,  whereas M = 3 N  
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is the number of elements in an N-order GTM chain. For simplicity and without loss 
of generality, in what follows we set rl = 1 and h = 1. 

To solve (2) we proceed with the well known Jordan-Wigner transformation [151 
and rewrite (2) as 

H = c ~ A c + ~ ( c ~ B c ~ + H c )  (3) 

where c = (c , ,  c2. . . . , cM) and the c,'s are anticommuting fermionic operators. The 
matrices A and B are simply given by [ l ]  

Since we are interested in the properties of the infinite aperiodic system, here we can 
work with the so-called 'c-cyclic' problem [2, 10, 151 with an antiperiodic boundary 
condition for (3). The infinite aperiodic system is approached by setting the size of 
the unit cell M = 3 N  + m. The spin model displays long-range magnetic order above 
a certain critical coupling A,. The quantum-mechanical transition is driven by the zero 
mode of the Hamiltonian (3), which is given by (A,-B,)+,=O and (A,+B,)$o=O, 
where A, and B, are the matrices A and B calculated at the critical line A, = Ac(r2,  r3) .  
The solutions to these equations are given straightforwardly by 

where &,  and &, are normalized constants and h , ( i )  assumes one of the three values 
A,, A,r, or Acr,,  depending on the site i in the GTM chain. The antiperiodic boundary 
condition requires I I M ,  A,(;) = 1, which immediately gives the critical line 

We should note that the critical condition ( 6 )  does not definitely ensure a phase 
transition. It may only lead to the maximum but finite correlation length with a 
behaviour similar to the random king case [6,7]. To establish whether the system can 
undergo a phase transition in the strict sense and develop the usual logarithmic 
singularity at the critical point, in what follows we will calculate the energy gap A E  
between the first excited and the ground state energies and the dispersion relation for 
the low-energy excitations near the critical point. 

The model with the Hamiltonian in a general bilinear fermionic form like (3) has 
been completely studied by Ceccatto [2]. The energy gap P E  is given by 

A E  = 2 r  I + o H ' * o l  +0(T3i2) 

1401 M o l  

where r = [ A  - A,l/A, and the matrix = Ac(i)8j,j-, . If the prefactor 

(7) 

then, with the use of Floquet's theorem, Ceccatto gives the dispersion relation for the 
low-energy excitations close to the critical point [2] 

AE,. = 2?7(7'+ k'')"' (8) 
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where k' is the pseudo-wavenumber. From the dispersion relation (8) it is straightfor- 
ward to deduce that the correlation length exponent U = 1 and the system possesses 
the expected logarithmic singularity in the ground state energy and the specific heat 
at the critical point. In other words, the system undergoes a phase transition which 
falls into the two-dimensional (ZD) classicaI king universality class. 

Zhifang Lin and Ruibao Tao 

To evaluate the value of q, we have to compute 

where Q, =II:=, A : ( i ) .  Taking into account the fact that the three-letter CTM sequence 
satisfies the property that the sub-sequence from the first to the (3m)th element consists 
of m AI's, m Ais and m A,'s, and paying attention to the critical condition (6) ,  we 
have Q3m = 1. Since the 'ternary code method' we described above is to start with 
nnn-negative imege::, i.e. the firs! ";%be: is zerc, cnrrqxxx!!ng !c :he fact tha: :he 
first element in the N-order GTM sequence is A, with the ternary code 

00 . . .  0 - 
N 

the corresponding ternary code for the (3m)th element should be 

XNXN-, . . . x 2 2  

where X, ( i  = 2 , .  . . , N )  may be 0, 1 or 2 whereas XI = 2 .  Let I and n denote the 
number of 1's and 23, respectively, in the set {X,, i = 2, .  . . , N } .  Obviously, we need 
to distinguish three cases with, respectively, 1+2n =3k, 3 k + l  and 3k+2 to evaluate 
Q,m-, and Q,m-2.  For instance, if 1+2n =3k ,  the (3m)th element should be A,, the 
(3m-1)th one A, and the (3m-2)th one A , .  It follows that Q3m-2=Af and Q3,,-l = 
A2ri .  Applying a similar consideration to the other two cases with 1+2n  = 3 k +  1 and 
3k+2,  we have 

Q i m - 2 =  u2 1 + 2 n = 3 k + l  [:: 1 + 2 n = 3 k + 2  

1+2n = 3k 1 + 2 n  = 3 k  
Q?,-i= I / u i  1 + 2 n = 3 k + l  (10) [:::: 1 + 2 n = 3 k + 2  

where U, = Afr: with i = 1,  2, 3 and r , =  I .  On the basis of the above discussion, it 
follows that 

where C : = p ! / [ q ! ( p - q ) ! ] ,  B = e x p ( i 2 ~ / 3 )  and !H denotes the real part. The first 
(respectively, the second and third) term on the right-hand side o f  (1 1) corresponds 
to 1+2n=3k (respectively, 1 + 2 n = 3 k + l  and 3k+2).  After some algebra, we have 

where 
3 1 

; = I  i - l  
U, = 3 +  Z: Afrf+ 1 A:r?r?+, 
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with r ( + 3 s  r,. In a similar way we obtain 

I &?I2 = 3 N - 2  U3$& . 
With these results and I&,H'$ol =3N&,,$o,,  it is not difficult to derive 

v =9/U3 # 0. (14) 

Thus, the dispersion relation for the low-energy excitations is 

AEk,=21) ( r2+k '2 )1 /2  (15) 

which will produce a phase transition belonging to the 2~ classical king universality 
class. So the three-letter GTM quantum spin system preserves the usual logarithmic 
singularity in both the ground state energy and the specific heat at criticality. 

For general g-letter GTM spin models, where the couplings take g possible values 
{Ar;, i = 1 . 2 , .  . . , g} according to the g-letter GTM sequence, the prefactor 'la can be 
calculated analogously by taking advantage of the 'g-nary code method'. The calcula- 
tion yields 

v g  = g2/  U8 (16) 

where 

e. 8 g 

i=, i - l  i=, 
(17) 2 U, = g+ Z: Azr?+ A:rfr:+,+. . . + Z: A:(K-')rtr:+, . . . r i+g-2  

with the critical condition 

1 
A, = (n:==, r f ) ' /g  

and r,. Thus, we observe that the QIM on the g-letter GTM lattice can exhibit an 
king-like phase transition with the critical behaviour the same as in the periodic case. 

To summarize, we have studied quantum Ising spin models on a family of multiletter 
GTM lattices and obtained the analytical results for the critical line and the dispersion 
relation for the low-energy excitations close to the critical point. Our results show that 
the g-letter GTM quantum king spin models can undergo an Ising-like phase transition 
and-develop the usual logarithmic singularity in the specific heat at the critical point. 
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